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Complete Axiomatizations for Quantum Actions

A. Baltag1 and S. Smets2,3

We present two equivalent axiomatizations for a logic of quantum actions: one in terms
of quantum transition systems, and the other in terms of quantum dynamic algebras. The
main contribution of the paper is conceptual, offering a new view of quantum structures
in terms of their underlying logical dynamics. We also prove Representation Theorems,
showing these axiomatizations to be complete with respect to the natural Hilbert-space
semantics. The advantages of this setting are many: (1) it provides a clear and intuitive
dynamic-operational meaning to key postulates (e.g. Orthomodularity, Covering Law);
(2) it reduces the complexity of the Solèr–Mayet axiomatization by replacing some of
their key higher-order concepts (e.g. “automorphisms of the ortholattice”) by first-order
objects (“actions”) in our structure; (3) it provides a link between traditional quantum
logic and the needs of quantum computation.
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1. INTRODUCTION

Our research is connected to the recent trend towards a “dynamification” of
logic, development pursued (mainly, but not exclusively) by the “Dutch school”
in modal logic, see e.g. (van Benthem, 1996): looking at various “propositional”
logics as being about actions, rather than propositions. This is also connected to
the older work (originating in Computer Science) on Propositional Dynamic Logic
(PDL) and its relatives (such as Hoare logic). More generally, there is already a
whole tradition in Computer Science of thinking about information systems in
a dynamic manner: a “state” of a system is, in this view, identified only by the
actions that can be (successfully) performed on the state. This view is embodied
in the various semantic notions of “process” that have been proposed in the
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Computer Science literature: labeled transition systems, automata, coalgebras etc.
On the other hand, there exists a completely independent, but similar trend towards
“dynamification” in the quantum logic community, trend started by (Daniel, 1982,
1989; Faure et al., 1995), and more recently developed by the “Brussels school”
in quantum logic, in a series of papers (Amira et al. 1998; Coecke et al., 2001,
2004; Coecke and Smets, to appear; Coecke and Stubbe, 1999; Smets, to appear).

All our past and present work on quantum systems may be thought of as
a blending of these separate trends and an application of these ideas to the
logic of quantum information. Our starting point was the observation made by
(Coecke et al., 2001; Coecke and Smets to appear) and developed further in
(Baltag and Smets, 2004; Coecke et al. (2004); Smets to appear) that the traditional
“propositional” quantum logic is already, in fact, an essentially dynamic logic.

This is reflected by the fact that the so-called “quantum implication” φ
S→ ψ (also

called “Sasaki hook,” and defined as ∼ (φ∧ ∼ (φ ∧ ψ)), where ∧ is conjunction,
i.e. intersection, of quantum propositions, and ∼ is the orthocomplement) is in
fact not a (deductive) implication at all, both for axiomatic4 and semantic reasons:
the semantics of the Sasaki hook is not given by an underlying consequence
relation; instead, its most natural semantics is in terms of measurements: a system

satisfies φ
S→ ψ if, after any successful measurement of property φ, the system

will necessarily satisfy property ψ . But this is a dynamic notion: indeed, if we
think of the successful measurement of φ as a “quantum test” action φ? (of
testing property φ on a quantum system), Sasaki hook corresponds to the dynamic
modality [φ?]ψ in Dynamic Logic (see e.g. Harel et al., 2000), and defines what
in Computer Science is called the weakest precondition of action φ? with respect
to (a postcondition) ψ . In quantum logic, this dynamic view can be traced back to
the analysis of the Sasaki hook as a Stalnaker conditional presented in Hardegree,
(1975, 1979) and is reflected upon in (Beltrametti and Cassinelli, 1977; Smets,
2001).

As we will see, we take these dynamic modalities as the basic operators of
our quantum dynamic logic. But once this step is taken, it is natural to extend
this notion to other kinds of physically meaningful actions, beyond measure-
ments; in particular, we can take weakest preconditions for unitary evolutions (the
“quantum gates” of Quantum Computing); more generally, we can apply this to
any quantum “action,” i.e. any action that can be obtained from quantum tests
φ? and unitary evolutions U via the operations of sequential composition α · β

(“do first α then β”) and non-deterministic choice ∪i∈I αi (“do either one of the
actions αi”). Quantum actions are an abstraction of the notion of physical ac-
tion, and in particular of the notion of “program” used in Quantum Computation.
The “choice” operation is needed here both to define real measurements (since

4 It does not satisfy the Deduction Theorem, which is the main logical property to be expected of a
deductive implication.
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a measurement is a non-deterministic choice over a family of tests of mutually
orthogonal properties) and while-programs (since the program while φ do α can
be encoded as ∪n≥0(φ? · α)n · (¬φ)? ).

In this paper, we propose two equivalent axiomatizations of the “logic” of
quantum actions. The first is in terms of Quantum Transition Systems (which we
also call quantum dynamic frames). This is a semantical abstraction of quantum
systems, in the form of a relational structure, of the type known in Computer Sci-
ence as “labeled transition systems,” and in modal logic as “(multi-modal) Kripke
frames.” It takes as fundamental the notion of (quantum) state and represents
quantum actions as relations between states. This is the well-known input-output
view of programs, identifying them with their “behavior” on states. Similarly,
a “property” in this view is nothing but a “set of states” (the ones satisfying
the property). Our axiomatization in terms of quantum frames extends the older
work on relational semantics for orthologic (based on orthoframes5 ) to the full
(orthomodular) quantum logic, and beyond. One of the main problems of or-
thoframes (as shown in Goldblatt, 1984) was that orthomodularity could not
be captured by any first-order frame condition. In contrast, in our setting, or-
thomodularity corresponds to a nice first-order frame condition, with a natural
dynamic/operational interpretation.

The second axiomatization is in terms of Quantum Dynamic Algebras. It takes
the notion of quantum action as the fundamental one, and directly axiomatizes the
underlying algebra. In this approach, “properties” are nothing but special types
of actions (namely, “tests” i.e. projectors) and hence will be identified with them.
This view is obviously the closest one to the traditional algebraic approach to
quantum logic, conceived as a logic of projectors. Due to the presence of the
above operations, the algebra of quantum actions will necessarily be a quantale.
This approach has its origin in the work by Coecke et al. (Amira et al., 1998;
Coecke et al., 2001; Coecke and Stubbe, 1999), where quantale structures have
been first used to capture the dynamics of quantum systems (including unitary
evolutions in Coecke et al., 2001).

There is in fact a third axiomatic approach, closely related to the first: namely,
building a finitary modal language describing quantum transition systems, in
the same way that (classical) Propositional Dynamic Logic (PDL) is a finitary
language for labeled transition systems. This approach, which we call Quantum
Dynamic Logic, is closer to a “logistic” view of quantum logic, as a propositional
logic with a finitary syntax axiomatized by a finite set of inference rules. But this
approach will of course involve a dynamic interpretation of the “logistic” view,
and this will be reflected in the more complex syntax of Quantum Dynamic Logic:
as in PDL, the syntax will have two sides, involving both propositions and actions.

5 See (Goldblatt, 1974); also known as preclusivity spaces (Dalla Chiara et al., 2004) or orthogonality
spaces (Foulis and Randall, 1971), or (in its dual version) similarity spaces.
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Due to lack of space and for reasons of simplicity, we do not develop this third,
more syntactic, approach here, but we plan to write a separate paper on the issue.6

Nevertheless, we think that the semantic and algebraic axiomatizations pre-
sented here are an important contribution to the “dynamification” of (traditional)
quantum logic. One important result is that this allows us to tackle the open prob-
lem stated in (Dalla Chiara et al., 2004) “of finding a calculus, if any exists, that
is sound and complete with respect to H”, where H is taken to be to the class of
Hilbert lattices.7 As the discussion in (Dalla Chiara et al., 2004) clearly points out,
traditional orthomodular quantum logic does not8 provide a complete axiomatiza-
tion with respect to H. Moreover, the stronger lattice-theoretic axiomatization of
C. Piron (based on the addition of the so-called “Covering Law” to orthomodular
quantum logic) is not complete (with respect to H) either.9 Also, the existing
complete lattice-theoretic characterizations of H (based on the work of Piron,
1964; Amemiya and Araki, 1967; Mayet, 1998; Solèr, 1995) are not given in first-
order logical terms, but they make an essential use of higher-order concepts,10

and hence they do not seem directly translatable into a first-order logical calculus.
We claim here that what is needed is a new dynamic-logical perspective, which
takes “actions” seriously, as first-class objects of the logic (instead of refering to
them indirectly as second-order concepts), thus allowing us to encode higher-order
aspects into a first-order language (with action modalities).

In this context, the Representation Theorem proved in Section 3 of this paper,
establishing the completeness of our axiomatizations of the logic of quantum
actions with respect to infinite-dimensional Hilbert spaces, can be seen as a partial
solution to the open problem in (Dalla Chiara et al., 2004). Our proof is based
on an extension of (Mayet’s version of) Solèr’s Theorem (Mayet, 1998; Solèr,
1995), itself an extension of Piron’s Representation Theorem for Piron lattices
(Piron, 1964, 1976; Amemiya and Araki, 1967). There is a technical condition
(due to Mayet) that we impose, requiring the existence of a special unitary action,
that is needed to ensure the existence of an orthonormal basis (for the underlying
generalized Hilbert space).

A final remark: our quantum dynamic algebra could be seen as a partial vin-
dication of the Jauch–Piron operational approach to quantum logic (Jauch, 1968;
Jauch and Piron, 1969; Piron, 1964, 1976). Instead of constructing a framework on

6 See also (Baltag and Smets, 2004), for a related finitary modal logic for compound quantum systems.
7 A Hilbert lattice, as defined in (Dalla Chiara et al., 2004), is any ortholattice based on the set of

closed subspaces of some Hilbert space of dimension at least two.
8 As a counter example, see the failure of the so-called orthoarguesian law.
9 A Piron lattice is a lattice satisfying the conditions given in (Piron, 1976), i.e. it is an atom-

istic, irreducible, complete orthomodular lattice that satisfies the covering property. Every Hilbert
lattice is a Piron lattice, but the converse is false: as shown by Keller (1980), this is due to
the existence of Piron lattices based on “generalized Hilbert spaces” on non-arhimedian division
rings.

10 For example “automorphisms” of the given lattice.
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all (equivalent) yes–no questions, we take tests as primitive. Tests can be viewed
as specific yes–no questions, namely the ones corresponding to the “filters” in
(Piron, 1976). One of the most basic and very often misunderstood ingredients
(see e.g. Smets, 2003) of the Jauch–Piron approach is the construction of the
conjunction or meet of properties via product questions, i.e. non-deterministic
choice of “questions” (which is most often viewed as a form of disjunction or
join). This point is elucidated in our paper: it is simply based on the fact that the
weakest precondition of a union of actions is the conjunction of the weakest pre-
conditions of each action. This allows us to follow Piron in our dynamic algebra
and define conjunction of properties via union (“choice”) of actions (using our
“test for failure” ∼ π of an action π , which is the weakest precondition ensuring
the impossibility of executing action π ). This offers a physical justification, not
only for conjunctions of incompatible properties, but even for the completeness
of the lattice of properties: indeed, infinite unions of actions are physically mean-
ingful, as non-deterministic choices between infinitely many alternative actions.
For instance, a measurement with respect to an infinite orthornormal basis (or any
infinite set of orthogonal states) is just such an infinite union of tests.

2. QUANTUM TRANSITION SYSTEMS

2.1. Dynamic Frames

For a given binary relation R ⊆ � × � on a set �, and subsets S, P ⊆ �,
we define the image of S via R:

R(S) = {t ∈ � : ∃s ∈ S (s, t) ∈ R}
and the weakest precondition of R with respect to (postcondition) P :

[R]P = {s ∈ � : ∀t ∈ � ((s, t) ∈ R ⇒ t ∈ P )}
The second differs, in general, from the standard notion of preimage; but, when R

is a partial function, the two notions coincide. The name “weakest precondition”
comes from Computer Science: when we think of R as being the input–output
relation of a program, then [R]P captures the weakest condition that must be
satisfied by the input-state to ensure that any output-state will satisfy condition P .
In other words, we have:

S ⊆ [R]P iff R(S) ⊆ P

When the set S is a singleton S = {s} consisting of a single state, we skip the set
notation and write R(s) and [R]s instead.

A labeled transition system (also called (multi-modal) Kripke frame) is a
relational structure (�, { a→}a∈A), consisting of a set � of “states” and a family
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of “transition relations”
a→⊆ � × � between states, relations labeled by a set A

called basic actions.
In PDL, one also considers some special kind of actions, called “tests.” Each

classical property P ∈ P(�) gives a “test” P ?, which is nothing but the diagonal
{(w,w) : w ∈ P } of the set P . This could be thought of as a “purely epistemic”
action by a classical (external) observer, “testing” property P , without in any
way changing the state of the system. So the basic actions of PDL could be
classified in two types: (“purely epistemic”) tests P ?, on one hand, and on the
other (non-testing, “purely dynamic”) basic actions U .

We slightly generalize this setting by defining:

A dynamic frame is a labeled transition system F = (�, {P ?→}P∈L, { U→}U∈U ), con-
sisting of:

1. a set � of objects, called states;

2. a family of binary “transition” relations
P ?→⊆ � × �, labeled by “test”

actions P ?; the action labels come from a given family L ⊆ P(�) of
subsets P ⊆ �, called testable properties;

3. a family of binary “transition” relations
U→⊆ � × �, labeled by basic

“actions” U ∈ U , which we will call basic unitary evolutions.11

We can equip any dynamic frame F with a measurement relation:

s → t iff s
P ?→ t for some P ∈ L

Intuitively, this means that state t can be obtained from state s by performing a
measurement. The negation of this gives an orthogonality relation on states:

s ⊥ t iff s 
→ t

Also, for any set S ⊆ �, we write t ⊥ S iff we have t ⊥ s for all s ∈ S.
Moreover, we define the orthogonal (or orthocomplement) of the set S by
∼ S := {t ∈ � : t ⊥ S}. The biorthogonal closure of a set S is simply the set
∼∼ S = ∼ (∼ S). It is easy to see that we always have S ⊆∼∼ S. When we
actually have equality S = ∼∼ S, then we say that the set S is biorthogonally
closed. Finally, for basic actions α ∈ L ∪ U and testable properties P ∈ L, we use
the abbreviations: α(P ) := (

α→)(P ), and [α]P := [
α→]P , for the image and the

weakest precondition of the set P via the relation
α→.

Example 1. Kripke frames for classical PDL are a special case of dynamic frames,
in which one takes L =: P(�), and the transition relation for a test is given

11 We call them “basic” since they might not be closed under composition; in a Hilbert space, the
composition of two unitary maps is unitary, but here it is possible to think of U as consisting of only
some basic logic gates, from which all the “relevant” ones can be generated by composition.
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by: s
P ?→ t iff s = t ∈ P ; i.e. it is simply the diagonal of the set P (while the

transitions
U→ are arbitrarily chosen binary relations on �). The “measurement

relation” is simply the identity s = t , and thus two states are “orthogonal” iff they
are distinct, so ∼ S = � \ S is the complement and ∼∼ S = S.

This example shows that classical PDL encodes a classical notion of mea-
surement: every set P ⊆ � is considered a “testable” property, and successful
tests do not change the current state. As mentioned above, PDL tests are classical
(non-interactive, “purely epistemic”) observations. It is now natural to consider a
quantum version of dynamic frames, in which measurements are non-classical,12

and so there exist no “purely epistemic” actions, every observation involving a
change of state. � is then the set of states of a physical system, orthogonality is
non-trivial, the testable properties are the biorthogonally closed subsets of �, and
unitary evolutions are the “purely dynamic” actions.

2.2. Quantum Frames

A quantum transition system (or quantum dynamic frame) is a dynamic frame

F = (�, {P ?→}P∈L, { U→}U∈U ), satisfying the following list of conditions (in which
variables P,Q range over testable properties in L, variables s, t, s ′, t ′, v, w range
over states in � and U ranges over evolutions):

1. Closure under arbitrary conjunctions: if L′ ⊆ L then
⋂

L′ ∈ L
2. Atomicity. States are testable, i.e. {s} ∈ L.

This is equivalent to requiring that “states can be distinguished by tests,”
i.e. if s 
= t then ∃P ∈ L : s ⊥ P, t 
⊥ P

3. Adequacy. Testing a true property does not change the state:

if s ∈ P then s
P ?→ s

4. Repeatability. Any property holds after it has been successfully tested:

if s
P ?→ t then t ∈ P

5. “Covering Law.” If s
P ?→ w 
= t ∈ P , then there exists some v ∈ P such

that t → v 
→ s.

6. Self-Adjointness Axiom: if s
P ?→ w→t then there exists some element v ∈

� such that t
P ?→ v→s

7. Proper Superposition Axiom. Every two states of a quantum system can
be properly superposed into a new state: ∀s, t ∈ �∃w ∈ � s→w→t

8. Reversibility and Totality Axioms. Basic unitary evolutions are total

bijective functions: ∀t ∈ �∃!s s
U→ t and ∀s ∈ �∃!t s

U→ t

12 Note that the non-classical measurements we have in mind are the ideal quantum measurements of
the first kind introduced in (Pauli, 1980).
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9. Orthogonality Preservation. Basic unitary evolutions preserve (non)

orthogonality: Let s, t, s ′, t ′ ∈ � be such that s
U→ s ′and t

U→ t ′.
Then: s → t iff s ′ → t ′.

10. Mayet’s Condition: Orthogonal Fixed Points. There exists some unitary
evolution U ∈ U and some property P ∈ L, such that U maps P into a
proper subset of itself; and moreover the set of fixed-point states of U has
dimension ≥ 2. In other words:
∃U ∈ U∃P ∈ L∃t, w ∈ �∀s ∈∼∼ {t, w} : U (P ) ⊆ P , U (P ) 
= P , t ⊥
w, U (s) = s.

Note: Our axioms imply that L, with set-inclusion as partial order, forms a Piron
lattice of infinite height: indeed, axiom 7 above (“Proper Superposition”) implies
the irreducibility of the lattice; axiom 5 is equivalent (in the context of the other
axioms) to the usual statement of Covering Law forL, and it also implies that “test”

relations
P ?→ are partial functions (i.e. the outcome of a test is unique). Similarly,

axiom 6 (Self-Adjointness) is equivalent (in the context of the other axioms) to the
Orthomodularity Law for L; finally, axiom 10 implies the existence of infinitely
many mutually orthogonal states. Observe that all the above notions are defined
in purely dynamical terms (e.g. the definition of orthogonality s ⊥ t above simply
means the impossibility of performing any test P ? on state s and reach state t).
Consequently, our axioms above provide dynamic/operational interpretations to
all the postulates of a Piron lattice (as well as to the Solèr-Mayet postulates).
For instance, we think that axioms 5 and 6 give a new and fresh insight into the
operational meaning of the Covering Law and Orthomodularity Law.

Main Example: Concrete Quantum Dynamic Frames. Any classical Hilbert
space13 H can be structured as a quantum dynamic frame F(H), by taking: as
set of “states” �, the family of all one-dimensional closed linear subspaces of H;
as class of testable properties L, the family of closed linear subspaces of H; as
“test” actions P ?, the maps induced on � by the projectors on the closed subspace
associated to each corresponding P ∈ L; as the set of “basic unitary actions” U ,
the family of all (maps induced on � by) unitary operators on H. Any subframe
of F(H) satisfying the above conditions is called a concrete quantum dynamic
frame. As we will prove later, every quantum dynamic frame is isomorphic to a
concrete quantum dynamic frame.

2.3. Quantum Actions Over a Frame

Given a quantum dynamic frame F , the class of quantum actions (or quan-
tum programs) over F is defined as the smallest family of binary relations

13 That is a Hilbert space over one of the following fields: reals, complex numbers or quaternions.
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Q ⊆ P(� × �) which contains all tests {P ?→}P∈L, and all basic unitary evolu-

tions { U→}U∈U as well as their inverses
U−1→:= (

U→)−1 = U←, and is closed under the
operations of relational composition14 R · R′ and arbitrary union15 of relations
∪i∈IRi . We denote by Q(F) the family of all quantum actions over F .

Intuitively, relational composition represents sequential composition of ac-
tions: do first action π then action π ′; while arbitrary union gives us non-
deterministic choice: do either one of the actions {πi}i∈I . An action π , that can be
expressed without the use of choice ∪ (i.e. only as a sequential composition of tests
and basic unitary actions) is called deterministic. As relations, such actions are
partial functions, i.e. for a given input-state s, they have at most one output-state
t (such that s

π→ t).

Proposition 1. (Adjointness for quantum actions)
Let D be the family of deterministic actions.

• There exists a unique map† : D→D, satisfying the conditions: (P ?)† =
P ?, U † = U−1, (U−1)† = U, (π · σ )† = σ † · π†.
We call π† the adjoint of the action π .

• Let s, w, t ∈ �: If s
π→ w → t then there exists some element v ∈ � such

that t
π†→ v → s.

Proposition 2. (Weakest Precondition)
For any quantum action π ∈ Q(F ) and any testable property P ∈ L, we have the
following:

• the weakest precondition [π ]P is a testable property, i.e. [π ]P ∈ L;
• the kernel of any quantum action is a testable property, i.e.:

Ker [π ] = [π ]∅ ∈ L
• Ker (P ?) =∼ P

Notations: The last claim suggests an extension of the orthocomplement notation
to quantum actions, by putting:

∼ π := Ker (π ) = [π ]∅
We will later use this notion in our axiomatization of quantum dynamic algebras.16

We also denote by

π [P ] :=∼∼ π (P )

the biorthogonal closure of the image of P via π .

14 Relational composition is defined by: (s, t) ∈ R · R′ iff ∃w (s, w) ∈ R ∧ (w, t) ∈ R′.
15 defined by: (s, t) ∈ ⋃

i∈I Ri iff ∃i ∈ I (s, t) ∈ Ri .
16 But note that in general we have ∼∼ π 
= π . In fact, ∼∼ π = π iff π is a test!
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Proposition 3. (Strongest Testable Postcondition)
For any quantum action π ∈ Q(F) and any testable property P ∈ L, we have the
following:

• π [P ] ∈ L
• π [P ] is the strongest testable postcondition ensured by executing π on

any state satisfying (precondition) P ; i.e., for all Q ∈ L:
π [P ] ⊆ Q iff π (P ) ⊆ Q

• For deterministic actions π ∈ D, we have π (P ) = π [P ] = ∼ [π†] ∼ P
• As a consequence, for deterministic actions π , we have a Galois duality

between [π ] and ∼ [π†] ∼ ; i.e. for all S ⊆ �: S ⊆ [π ]P iff ∼ [π†] ∼
S ⊆ P

• In particular, for tests Q?, we have: S ⊆ [Q?]P iff ∼ [Q?] ∼ S ⊆ P

Recall that our dynamic modality [Q?]P captures the meaning of

the so-called Sasaki hook Q
S→ P , and so the strongest post-condition

Q?[P ]= ∼ [Q?] ∼ P is just the ortho-dual of the Sasaki hook, i.e. the Sasaki
projector. So the last claim in the above Proposition captures the well-known
Galois duality between the Sasaki hook and Sasaki projector. Moreover, in the
context of our other axioms, this last claim is equivalent to the Self-Adjointness
Axiom, and thus to the Orthomodularity Law.17

3. QUANTUM DYNAMIC ALGEBRA

As the work of D. Kozen and V. R. Pratt in the late seventies and early
eighties indicates, an algebraic semantics for a propositional dynamic logic can be
presented as a dynamic algebra of actions. We will now extend this idea, linking
it both to the work of Coecke et al. (2001) on using quantales to capture the
dynamics of quantum systems, and to the work of Piron (1964), Solèr (1995),
Mayet (1998) and others on the complete axiomatization of the lattice of complete
subspaces of a Hilbert space. We obtain Quantum Dynamic Algebras, as a complete
axiomatization of the algebra of quantum actions. But unlike (Solèr, 1995; Mayet,
1998), our axioms are “essentially first-order,” i.e. do not essentially18 involve any
quantification over high-order objects, such as automorphisms of the structure we
describe.

Since we take only actions as objects in our algebra, we will have to identify
“properties” p with their tests (projectors) p?. So there is no need for the “test”
sign ?, and we can simply denote with p both the property and the action of testing

17 For the equivalence between orthomodularity and this Galois duality, see e.g. (Coecke and Smets,
to appear).

18 We write “essentially,” since the definitions of a “quantale” and of “the sub-quantale generated by a
subset” involve trivial second-order quantifications over all subsets of a given structure.
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it. So now the weakest precondition becomes an operation on actions. Since this
is not a very natural action operation, we take instead as basic a special case of it,
namely the operation

π �−→ ∼ π := Ker (π ) = [π ]∅
mapping an action to its kernel. The kernel, as a property, expresses the impossi-
bility of executing action π , and the test (∼ π )? of this property can be understood
as a “test for failure” of the action π . Since we identify the property with its test,
∼ π is the same as (∼ π )?, and thus we can simply interpret this as an operation
taking any action π to the action ∼ π of “testing for failure of action π .”

We will be able to recover the (test of) the weakest precondition [π ]p as
∼ (π · ∼ p). More importantly, we can recover the lattice operations on L by
defining them only in terms of action operations: indeed, a conjunction

∧
i∈I pi is

true iff we have ∼ ⋃
i∈I ∼ pi , i.e. none of the failure tests ∼ pi can be executed.

A Quantum Dynamic Algebra is a structure:

(Q,
⋃

, ·, ,∼)

satisfying a number of axioms (to follow). We call the elements of Q quantum
actions (or programs), and use variables x, y, . . . to denote them. The types of our
operations are as follows: the union (or “choice”)

⋃
: P(Q) → Q is an infinitary

operation, (sequential) composition · : Q × Q → Q is a binary operation, and the
“test for failure” (of an action) ∼: Q → Q is a unary operation. The actions of
the form ∼ x are called tests, or “properties,” and they can be thought of as an
abstraction of the notion of projector (or closed linear subspace). We put

L := {∼ x : x ∈ Q}
for the set of all tests, and for convenience we use variables p, q, . . . to denote
them (although all such variables can obviously be eliminated by replacing them
with ∼ x etc.).
We make the following definitions and abbreviations:

0 := ⋃ ∅ 1 :=∼ 0
[x]p :=∼ (x· ∼ p)

∧
i pi :=∼ ⋃

i ∼ pi

p ≤ q iff p ∧ q = p p ⊥ q iff p ≤∼ q∨
i pi :=∼∼ ⋃

i pi At(L) := {p ∈ L | ∀q ∈ L(0 
= q ≤ p ⇒ q = p)}
The last is the set of all atoms of L. We also put

U := {x ∈ Q : ∃y x · y = y · x = 1 and ∀p ∈ L x· ∼ p = ∼ (x · p)}
for the set of all unitary evolutions. We use variables (again, eliminable) u to denote
the elements of U . Observe that U is closed under composition and inverses. As
usually, we denoted by u−1 the inverse of any u ∈ U (i.e. the unique element s.t.
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u · u−1 = 1). We also define the set D of deterministic actions by:

D := {x ∈ Q : ∀a ∈ At(L)∃ b ∈ At(L)a ≤ [x]b}
Note that L ∪ U ⊆ D and that D is closed under composition. For any action
x ∈ D and any property p ∈ L, we define the image-set of p via x by:

x(p) := {b ∈ At(L) : ∃ a ∈ At(L) ∃ y ∈ D a ≤ p, y ⊆ x, a ≤ [y]b, a 
≤∼ y}
The strongest post-condition internalizes this image-set inside L, by taking its
(quantum) join:

x[p] :=
∨

x(p)

This is an element of L which represents the (test corresponding to the) biorthog-
onal closure of the image. But, for deterministic actions, this closure coincides
with the image. Moreover, we have:

x deterministic, a ∈ At(L) =⇒ x[a] ∈ At(L) ∪ {0}

Axioms for Quantum Dynamic Algebras

The structure (Q,
⋃

, ·, ,∼) is required to satisfy the following conditions:

1. 0 ∈ L ; or equivalently, ∼ 1 = 0
2. (Q,

⋃
, ·, 1) is a quantale19 generated by the set L

⋃
U of tests and

unitary evolutions.
3. Choice: [

⋃
i xi]p = ∧

i[xi]p ; or, equivalently: ∼ ⋃
i xi = ∧

i ∼ xi

4. Composition: [π · σ ]p = [π ][σ ]p ; or, equivalently: ∼ (x · y) =
[x] ∼ y

5. Adequacy : p ∧ q ≤ [q]p, and also p ∧ [p]q ≤ q

6. Proper Superpositions: if p, q 
= 0 then there exists r ∈ L such that
r 
⊥ p, r 
⊥ q.

7. Self-Adjointness Axiom: For all p, q ∈ L: p ≤ [q] ∼ [q] ∼ p

8. “Covering Law”: if q ∈ At(L) and p 
⊥ q, then p ∧ (∼ p ∨ q) ∈ At(L).
9. “Atomicity”: L is atomistic, i.e.: p ≤ ∨{q ∈ At(L) : q ≤ p}

10. Mayet’s Condition. There exist p, q, r ∈ L, u ∈ U , such that for every
s ≤ q ∨ r :
p ≤ [u]p, p 
= [u]p, q, r 
= 0, q ⊥ r, s = [u]s

11. Actions are determined by their behavior on atoms:
If x(a) = y(a) for all a ∈ At(L), then x = y.

12. Image commutes with unions: (
⋃

i∈I xi)(p) = ⋃
i∈I xi(p).

(Note that here,
⋃

on the left is the quantale sup, while
⋃

on the right
is set-theoretical union.)

19 That is (Q,
⋃

) is a complete lattice, (Q, ·, 1) is a monoid and · distributes over
⋃

.
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The statement of the last two axioms 11 and 12 may look set-theoretical, but these
two axioms can be replaced by only one non-set-theoretical axiom:

11′. For all deterministic actions x, xi ∈ D :

x ⊆
⋃

i∈I

xi iff ∀a ∈ At(L) ∃i ∈ I x[a] ≤ xi[a]

where ⊆ on the left is just the partial order relation20 of the quantale Q.

Example: Frame Algebras and Concrete Algebras

The quantum actions Q(F) over any quantum dynamic frame form a quan-
tum dynamic algebra. In particular, the algebra Q(F) of quantum actions over
a concrete frame F ⊆ F(H), based on a classical Hilbert space H, is called a
concrete quantum dynamic algebra. Notice that, for an operator x in a concrete
algebra, ∼ x is the (projector over the subspace given by the) kernel Ker(x) of the
relation x.

Theorem 1. Every quantum dynamic algebra is isomorphic to a concrete quan-
tum dynamic algebra. As a consequence, every quantum dynamic frame is isomor-
phic to a concrete quantum dynamic frame.

Proof: (sketch): It is easy to see that, in a quantum dynamic algebra, L forms
a Piron lattice of infinite height. By Piron’s theorem, there exists an isomorphism
i : L→L(H ) between L and the lattice of projectors L(H ) over a generalized
Hilbert space (also called orthomodular space) H. Also, any basic unitary element
u ∈ U induces an automorphism of the ortholattice L, given by:

p �→ u[p] = [u−1]p

(where u−1 is the inverse of u ∈ U). This, together with our Axiom 10 above,
ensures that the special unitary element (call it u0) from Axiom 10 satisfies the
conditions of Lemma 1 in (Mayet, 1998); by applying this lemma, we conclude
this special element u0 is induced by a unique unitary operator (in the sense of
Hilbert spaces!) j (u0) on the underlying generalized Hilbert space H, i.e. we have
j (u0)(i(p)) = i(u0[p]). This, together with (the other clauses included in) our
Axiom 10 above, ensures that the lattice L fulfills Mayet’s condition in (Mayet,
1998), equivalent to Solèr’s condition in (Solèr, 1995), i.e. to the existence in H of
an infinite set of orthonormal vectors. By Solèr’s theorem, H must be a classical
Hilbert space, so L is isomorphic to the lattice of projectors (or closed linear
subspaces) of a classical Hilbert space. It is easy to see that this implies that every

20 Note that the restriction of this quantale order ⊆ to L is identity, and thus it does not coincide with
the order ≤ of the lattice L.
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automorphism ofL is induced by a unique unitary operator onH: so all our unitary
elements u ∈ U are induced by (uniquely determined) unitary operators j (u) on
H. Let now A be the map induced on “states” (one-dimensional subspaces) in
F(H) by any operator A on H. We define a map I : Q→Q(F (H)), by putting:
I (p) = i(p), I (u) = j (u), I (x · y) = I (x) · I (y) and I (

⋃
i∈I xi) = ⋃

i∈I xi . The
last two axioms of our algebra ensure that this is a well-defined unique map.
Together with the other axioms, they ensure that it is in fact an embedding. �

The Representation Theorem for quantum frames F follows from this, to-
gether with the fact that Q(F) is a quantum dynamic algebra, whose atoms
correspond to the states of the frame.

4. CONCLUSION

We presented two axiomatic structures for the logic of quantum actions.
The power of our approach comes from the underlying “(inter)action”-based
philosophy. As explained above, this stays closely connected to the operational
approach initiated by Jauch and Piron. In particular, a true characterization of
a physical system should be based on the structure of the actual and potential
physical qualities of the system itself, which encode how the system might act and
react under all relevant circumstances. Indeed, the axiomatization presented in this
paper replaces the known static approach to quantum logic with a straightfoward
representation (as a labeled transition system) of the potential dynamic behavior
of the physical system itself.

As mentioned above, with our quantum dynamic frames comes naturally (as
with any Kripke frame) an associated modal logic, in this case, a quantum version
of dynamic logic (PDL). Our representation theorem yields a completeness result
for this logic, which we plan to present in a future paper. This could be considered
as a positive solution to the open problem in (Dalla Chiara, 2004) “of finding
a calculus, if any exists, that is sound and complete with respect to (the class of
Hilbert lattices) H.” Moreover, the dynamic character of our logic makes it relevant
to Quantum Computation: extensions of our work to multi-partite systems (such
as in Baltag and Smets, 2004) could play the same role in analyzing quantum
programs (and proving their correctness) that classical PDL (and Hoare logic)
played for classical programs.

However, much work remains to be done in this sense. For instance, in
(Baltag and Smets, 2004) we extended the logic of quantum actions to cover
entanglements (in addition to tests and evolutions), obtaining a logical calculus
for entangled systems, which we called the Logic of Quantum Programs (LQP).
But to date, we have no completeness results for LQP, and even the existence of
any such complete calculus for entanglement is an open problem.
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Another problem, of equal importance for quantum computation, is extending
our setting to deal with the quantitative aspects of quantum information, and in
particular with notions like “phase” and “probability.’ Our aim in this paper was
to develop a logic to reason about qualitative quantum information flow, so we
neglected the probabilistic aspects of quantum systems. There are natural ways to
extend our setting, using the notion of probabilistic transition system, and we plan
to investigate them in future work.

We hope that this paper will provide a new significant contribution (in addition
to other related work (Abramsky and Coecke; Baltag and Smets, 2004) to the
on-going search for a complete “logical calculus of quantum information flow.”
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Solèr, M. P. (1995). Characterization of Hilbert spaces by orthomodular spaces. Communications in

Algebra 23(1), 219–243.
van Benthem, J. (1996). Exploring Logical Dynamics, Studies in Logic, Language and Information,

CSLI Publications, Stanford.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


